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ABSTRACT 

Let 2 < p < oo. The Banach space spanned by a sequence of independent 
random variables in L p, each of mean zero, is shown to be isomorphic to 
l 2, I p, 12@ l p, or a new space Xp, and the linear topological properties of Xp are 
investigated. It is proved that Xp is isomorphic to a complemented subspace of 
L p and another uncomplemented subspace of L p, whence there exists an 
uncomplemented subspace of l p isomorphic to l p. It is also proved that Xp 
is not isomorphic to the previously known ~op spaces. 

1. Introduction 

Fix 1 < p < oo, p # 2. The motivation for this work derives f rom the fol- 

lowing question: What  are the Banach spaces isomorphic (linearly homeomorphic)  

to a complemented subspace of LP? 

This question acquired added interest f rom the results of  [7] and [10], which 

show that a Banach space has this property if and only if it is an ~ap space or 

an ~'¢2 space (see the next section for the appropriate definitions). The previously 

known separable ~,¢p spaces are L p, I p, I p ~3 12 , and (/2 if) 12 • "")r .  We construct 

here an Xep space, denoted Xp, which is considerably different from these four 

previously known spaces. (Thus problem ld  of [7] is answered in the negative). 

We discovered this space by investigating the span of a sequence of independent 

random variables in L p of mean-zero, for p > 2. (Xp is defined following Theo- 

rem 3 of §3). We completely determine the norm-structure of the span of such 

a sequence in §3. The inequalities derived there (in Lemmas 1 and 2, and in Theo- 

rem 3), may be of independent interest to probabili ty theorists. 

Now fix 2 < p < oo. We also prove in §3 that Xp is isomorphic to a comple- 

mented subspace of LP(namely the closed linear span of a certain sequence of 
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independent 3-valued symmetric random variables), and an uncomplemented 

subspace )~p of l p 0) 12 • In fact we prove that (lP@ 12)/~p is not an .~ep (or an ZP2) 

space, thus yielding a partial answer to problem 4a of [10]. We also show that 

there exists an uncomplemented subspace of I p isomorphic to I p. (This shows 

in the terminology of 19], that I p is not "subspace homogeneous" for these 

values of p). In the appendix we give a constructive proof of this result and the 

fact that ,(p is uncomplemented in IP@ 12 , by means of studying matrices re- 

presenting operators from l~ to 12 . 

In §4 we study the linear topological properties of Xp. In particular we show 

that Xp is isomorphic to a "symmetric" sum of itself (thus Xp is isomorphic to 

its square, i.e. to Xp @ Xp), and we prove that Xp is not isomorphic to the four 

previously known ~ p  spaces mentioned above. This proof is rather delicate, 

and consists mainly in showing that Xp is not a continuous linear image of 

(/2~) 12@ ...)p. Our argument for this requires the introduction of a new iso- 

morphism invariant. This property (defined prior to Theorem 9) may be of use 

in other isomorphism problems. (See also a related concept defined in the second 

remark following Lemma 10.) 

Our techniques show the existence of at least one more new ~ p  space, denoted 

Bp (defined at the end of §4). Thus we now have at least six mutually non-iso- 

morphic separable ~ep-spaces (of infinite dimension). It seems quite possible 

that there are infinitely many isomorphically distinct separable ~ p  spaces of 

infinite dimension; this is of course an open problem. 

Results of ours and others discovered since the writing of the first draft of the 

paper, show that the ~,ep space (Xp ~9 Xp 03 ".-)p is isomorphically distinct from 

these six spaces; see the end of §4 for further remarks. 

2. Definitions and notation. 

By "operator" we mean "bounded linear operator" and by "projection", 

"bounded linear projection". Given Banach spaces X and Y (over either the real 

or complex scalars), we say that the operator T: X ~ Y is an isomorphism (resp. 

an isometry) if T is 1-1 with closed range (resp. T is norm-preserving), We say 

that X and Y are isomorphic (denoted X ~ Y) if there exists an isomorphism 

from X onto Y; then we define d(X, Y) = inf{[ I Ztl II T-1 t1: T: X ~ Y is a sur- 

jective isomorphism}. 

Given A a closed subspace of X,  A ± denotes the annihilator of A in X*, the 

dual of X.  (Thus A ± = {x* e X* : x*(a) = 0 for all a e A}). 
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If (x.) is a sequence of elements in X ,  [x.] denotes the closed linear span of 

the x. 's;  Ix1, . . . ,x.] denotes the linear span of the n elements x~, . . . , x . .  (x.) is 

said to be a basic sequence (resp. an unconditional basic sequence) if for every 

element y c [x.] there exists a unique sequence of scalars (c.) with y = ~ e.x. ,  

the series converging in norm (resp. the series converging unconditionally in 

norm). (x.) is said to be a basis of X if (x.) is a basic sequence and [x.] = X.  

For properties of bases and unconditional convergence, see [2]. 

Given Banach spaces X and Y with bases (x.) and (y.) respectively and K < co, 

we say that (x.) and (y,,) are K-equivalent (resp. isometrically equivalent) if 

there exists an isomorphism (resp. an isometry) T: X ~ Y with T(x.)  = y.  for  

all n,  such that II T-111 }1T II < K .  We say that (x.) and (y.) are equivalent i f  

they are K-equivalent for some K .  We note that by the closed graph theorem, 

(x.) and (y.) are equivalent if and only if for all sequences of scalars (c.), ~ c.x. 

converges if and only if ~ c.y. converges. 

Given 1 < p < co and Banach spaces X 1 , X 2 , " ' ,  (X1 @X2 • "")p denotes the 

Banach space consisting of all sequences (x.)~ 1-I,~l Xi with I[ (x.)I[ = ( ]~J°°--1 
• co X [] xj 1]") < co (Elements of /-[i=~ i may be denoted (x(n)) on occasion). 

(X 1 @-.. @ X.)p is defined in the obvious way; if Xi is the one-dimensional 

space of scalars for all i ,  then (Xa ®. - -@X.)p  is denoted by I. p and 

(Xt • Xz • "")p by I p. The usual basis or unit-vectors basis of I p refers to 

the sequence (y.) where y. ( j )  = 6.j for all positive integers n and j .  

For 1 < p < co, LPrefers to LP[0,1] ; i.e. the space of!equivalence classes ofpth po- 

wer Lebesgue integrable functionsf on [0, 1] under the norm I1 f I[, = (j'ox ! f(t){Pdt) 1/" 

Throughout, p and q shall always denote numbers such that 1/p + 1/q = 1 

We identify (LP) * with L q. 

By a random-variable in L p , we mean simply a measurable function f be- 

longing to L ". For the definition and standard results concerning independent 

random variables, see [11]. 

A Banach space X is called an ~ p  space if there exists a 2 > 1 such that for 

every finite-dimensional subspace F of X,  there exists an n and an n-dimensional 

subspace G of X with F = G and d(G, I. p) < 2. For the basic properties of £~ap-spa- 

ces, see [7] and [10]. We do not use these results in an essential way here. 

However, the basic result of [10] mentioned in the introduction motivates our 

work. 
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3. Inequalities concerning independent random variables in L p 

As we remarked in the introduction, it is known that 12 is isomorphic to a com- 

plemented subspace of L p for all 1 < p < ~ .  This may be seen explicitly as fol- 

lows: Let r(t) be the function with period one defined on the real line by 

r(t) = 1, 0 < t < l  

r(t) = - 1 ,  ½ < t < l .  

Let rn(t) = r(2"-10 for n = 1 ,2 , . . . .  The functions r,  are called the Rademacher  

Junctions. In 1923, Khintchine proved that they satisfy the following inequalities 

[5]: 
For any 0 < p < ~ ,  there exists a constant Bp depending only on p,  so that 

for any n and n-scalars cl , . . . , c , ,  

(A) B ;  i] ~ cir,(t)l,dt 1/, < ( ZIc~]2)*/2 < Bp I~, c,r,(t)]Pdt . 
• ~ 0 

It follows immediately from these inequalities that if Y denotes the closed linear 

span of the r , 's  in Lp, and 1 < p < ~ ,  then Y is isomorphic to 12. Moreover, 

if 1 < p < oo, the orthogonal projection extends naturally to a bounded linear 

projection from L p onto Y. 

In the language of probability theory, ra, r2, ... is a sequence of independent 

symmetric 2-valued random variables. We shall prove that i f f~ , f2 , . . ,  is a sequence 

of independent symmetric 3-valued random variables and Ydenotes its closed linear 

span in Lp, (1 < p < oo), then again Yis complemented by means of orthogonal 

projection. We shall also see that if p > 2, then putting w, = II f ,  lip/liT. 112, if 

the sequence (w,) satisfies 

(1) E w  2p/(p-2)= ~ and w , ~ 0  as n ~ ,  

then Y is isomorphic to an uncomplemented subspace of IP@ 12 . In section 4 

we shall see that the isomorphism type of Y is independent of the sequence w 

satisfying (1) (in fact Y ,-, Xp of the introduction), and is considerably different 

from other known ~ p  spaces (e.g. Y is not a continuous linear image of I p @/2). 

We begin our work by investigating the Banach space structure of the span 

in L p of  a sequence (f ,)  of independent random variables of mean zero. Our 

first three results show that this structure depends solely on the sequence of ratios 

(w,) defined above. 
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LEMMA 1. 

belonging to L p. Then  

( 
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Let  1 < p < oo, and let f l , . . . , f ,  be independent  random variables 

__< 2Pmax If ,  l'dx + .  + IIol'dx , 

following notation; for 0 _< r ___ p,  PROOF. We introduce the 

P, = ( f l f l  + "'" + f , l ' d x )  11" and 

We may and shall assume that f~ > 0 for all i. Now 

lip 

I~ = I (f* + "'" + f")P-*(f* + "'" + f , ) d x .  
L 

But 

f 

put 

(ft  + " ' "  ÷f.)P-*f, dx < 2.- i f  [f(-a + (f2 + " ' "  +f.)~-t]f~dx 

= 2~- ' [ f f~dx+f(A+. . .+f . ) ' - ldx f f ldx]  

<= 2P- ' [ f f (dx + f (y~ + ... + f . )P-  t dx  f A dx] , 

IJp < max{2Np,2PNx} < 2Pmax{Np, N~}. Q.E.D. 

REMARK. For fixed p and non-negative fi 's the inequality of Lemma 1 is sharp 

to within a constant. For the non-negativity of the f~'s alone, implies that 

pp _>- max{Np, N1}. 

The next lemma is essentially known, i.e. it is a simple consequence of known 

results. 

o r  

the equality holding by the independence of f l  and (f2 + "" + f . ) .  Similarly, 

( f l  + "'" + L )  p- *fflx < 2 p- 1 f / ' dx  ÷ ]~p_ 1, k d 

holds for any i, 1 _< i _ n. Summing over i, we obtain that 

p--1 #2 =< 2P-a(N2 + #~-~N1). But/~p-t  =</lp by H61ders inequality. Thus 

P P p - -  
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LEMMA 2. 

belonging to L p with ~fidx = O for  all i. 

(a) I f  el , . . . ,e ,  are given with e i = +__ 1 all i, then 

I ~ : ,  + "'" + ~.i , , l"dx) <__ 2 I : ,  + ' 

(b) 
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Let 1 < p < oo and let f l ,  . . . , f ,  be independent random variables 

PROOF. (a) By a standard result in probability theory, i f f  and g are independent 

random variables in L" with f f = f g  = 0, then f l f iPdx  < f l f +  glPdx (c.f. 

p. 263 of [11]). Thus IlflL :< IIf+ gll <11 II denotes here, the p-norm of f ) .  

Now let et,-..,e~ be given, and put f = ~ ~,=+lf, and g = ~ ~,=-lf , -  Then 

f + g = Y~ ~'= lfi and f -  g -- ~ ~'= i sill. Our assumptions imply that 

f f = f g = O  and f and g are independent, whence I1f11-< lif+gll and 

II g II =< I l l  + g II, so I l l -  g II <= 2 Ill + g II. 
(b) This is an immediate consequence of (a) and the following known result: 

If  g l , . . . , g . E L  p are given, then if p < 2, there exist e, = + 1 with 

II ~,g~ + "'" + ~,,g,, II,, --< (11 g, I I ; +  "'" + II g,,ll;;) ' / ' ,  

while if p > 2 there exist e~ = + 1 with 

(tlglltPp + ... + llg, llPp) lip < llelgl + ... + e,g, tlp. These are both in turn simple 

consequences of Clarkson's inequalities. For p < 2, an explicit proof  may be 

found on p. 209 of [16]. For p > 2, an argument almost identical to the one 

in [16] may be obtained by simply reversing all the inequalities given there, 

starting with Clarkson's inequality valid for p > 2; 

II f II g + 11 g 11 g <= ~;l lf + g II; + I l l -  g 11;). 
REMARK 1. If the fi 's  are in addition assumed to be symmetric, then in Lem- 

ma 2, the constant 2 may be replaced by the constant 1. 

REMARK 2. Lemma (2a) implies immediately that if f l , f2 ,  "'" is an infinite 

sequence of independent random variables in L p , each of mean zero, then (f,) 

is an unconditional basic sequence. 

THEOREM 3. Let 2 < p < oo. Then there exists a constant Kp depending 

(: )"" (f f )"" If1 + ' " + f . I  pdx < 2  I f l i P d x + ' " +  If, iPdx f o r p  < 2 

(f )lip (f ;I )lip I:~ + +:,l'd~ ~ ~ l:~l'dx +-" + :.l"dx for p > 2. 
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only on p, so that if f l , " ' , f ,  are independent random variables belonging to 
L p with ffidx = 0 for all i, then 

n P \ l i p  \1/2 I (f 2:,f,'ax)'/"<-_K.max{(2xf li, I d.) , (,=~ f li, l:dx) j 
and 

( f  ifilfi:Pdx) 1/p----½max ((~=~ f ]filPdxf/p' (,=~ f ]f~i2dx)'12} • 

PROOF. We adopt the same notation employed in the proof of Lemma !. 

Thus, we are to prove that pp <= Kpmax{Np, Nz} for some Kp depending only 

on p, and/~p => ½ max{Np, N2}. Now the independence of thef~'s and our assump- 

tions imply that f ~fldx = ff, dx ffjdx = 0 a l l / ~  j ,  i.e. t he f / s  are orthogonal. 

Thus N2 = Pz and hence the second inequality follows from Lemma 2(b) and 

the fact that /x 2 < #p. 

To prove the first inequality, we let r,, ..., r, be the first n Rademacher func- 

tions (as defined at the beginning of this section), and fix 0 < t < 1. Then by 

Lemma 2(a), 

2" f [ r~(t)fl(x ) +... + r,(t)f~(x)['dx. <= 

Integrating both sides of this inequality with respect to t and changing the order 

of integration, we obtain 

,.. ~: 2,B; f (Is', I:(x) + ... + liol~(x))'~:dx 

by Khintchine's inequalities (A) (where Bp is a constant depending only on p, 

in fact Bp < #p/Z). But Ifl I2 , " ' , l f ,  I 2 are independent non-negative random 

variables belonging to L p/2. Since p/2 > 1, we obtain by Lemma 1 that 

(f , -  
2 2 max{N v,g2}. (If, I + "  + li.l~) "" dx) ~ "" ~ 

Thus the last two inequalities yield that/tp < 2 Bp2pl4{max Np, N2} , so we may 

set Kp = 2 ~/4+lBp. Q.E.D. 

(The technique of integrating against the Rademacher functions is well known; 

it may be found in Paley's work [12].) 

Let 2 < p < oo. Theorem 3 determines the structure of the Banach space 

spanned in L p by a sequence of independent random variables of mean-zero. 
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Precisely, let fl,f2, "'" be such a sequence, put wi = II f ll2/ll f+ Ilp and assume (as 

we may) that 1f f, ]tp = 1 for all i. Letting Y denote the closed linear span of  the 

f~'s in L p, Theorem 3 shows that if y ~ Y, there exists a unique sequence of scalars 

(xn) such that y = ~ ~o= 1 xifi, the series converging in L P mean (and incidentally 
a.e. by the independence of the f~'s), such that 

(2) Xlx i l  p< oo and X Ix,12w < o o  

Moreover, defining li (xn)It by 
I](xn) [I = max{( 52 Ix,[P) l/p, ( Y+ [x,12w2, )I/2}, 

we have that 

+[l(x°)[I ---< ]ly[Ip - -</ , l l (x°) ] [  • 
Accordingly, given any sequence w = (w.) of positive scalars, we define Xp.w 

to be the space of all sequences (x.) of scalars satisfying (2), under the norm 
defined above. It is easily verified directly that Xp.w is a Banach space;we shall see 

shortly that ifw satisfies(1),Xp.,~ is isometric to a closed uncomplemented subspace 

of 1P @ 12 (where we define IIx + y [I = max{U x N, 11 y 11} for x e I p, y s 12). More- 

over we shall show in §4 that Xv. w ,~ Xp, w, if w w' satisfy (1). Thus the space Xp 

mentioned in the introduction refers to Xp.w for any w satisfying (1); Xq is defined 

by duality, X o = X~. 

The point of our development so far, is that if the f~'s, w~'s, and Y are as above, 

then Y is isomorphic to Xp.w. 
We wish now to show that for any w, Xp,w is isomorphic to a complemented 

subspace of L v . Towards this end, we need to study the spaces spanned by sym- 

metric 3-valued independent random variables. 

We recall that a random variable g defined on [0, 1] is said to be symmetric 

if p{x: g(x) e E} = p{x: - g(x) e E} for any Lebesgue measurable set E ,  where/~ 

denotes Lebesgue measure. (Evidently if g is symmetric and integrable, then 

f gdx = 0). Now suppose that g is a symmetric random variable taking on the 

values 1, 0 and - 1. Then [ g l is the characteristic function of some measurable 

subset of [0, 1] ; thus if 2 < p < oo, 

(3) II llg[l;Zgll+=llgI[; 1 (where as always, p l - + - l = 1 ) ' q  

Evidently (3) also holds for any symmetric 3-valued random variable g. 

We are now prepared to prove that Xp,w is indeed isometric to a complemented 

subspace of L p, (p > 2). 
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THEOREM 4. Let 1 < p < oo, let f l , f z ,  "'" be an infinite sequence of inde- 
pendent symmetric 3-valued random variables, and let Yv denote their closed 

linear span in L v. Then there exists a projection P from L p onto Yv such that 

1[ P l[ =< Kv (where K v is as in Theorem 3). Moreover f ix ing p > 2 and putting 

w. = Ilfoll=lllf. ll, for all n, Yp is isomorphic to Xv, w while Y, is isomorphic 
to X* p , w  ° 

PROOF. Fix 2 < p < oo. We shall prove that orthogonal projection yields a 

projection from L p onto Yp of norm at most Kp. We then easily obtain all the 

assertions of Theorem 4. For the adjoint of this projection yields a projection 

from L q onto Yq and of course then Y~ Yp ,,, * , ,-, * Xp.~ by the remarks following 

Theorem 3. 

We may assume without loss of generality that f ,  is real-valued with IIf, I], = 1 

for all n. We then define P to be the restriction to L p, of the orthogonal projection 

from L 2 onto Y2, regarding L p ~ L 2. Thus P: L P ~  L 2 is explicitly given by 

P(S>= ~, f(x)fXx)dx IIs, llm:s. 

for all f e  L p. Now fix f e  L p, and put 

(fo ) Xn = f(x)fn(x)dx I l l ,  117 ~ 

Then 

for all n. 

( z Ix.l:w.~) ',: = IIPfll: ~ Ilsll: ~ I l f l l . .  

Now let n be fixed and c , , . - . ,c ,  be n scalars such that z Icjl~ ==_ 1. Then 

putting f j  = IIfJll;2f:, c A , c F = , . . . , c . L  are independent random variables be- 

longing L q, each of mean zero. Since q < 2 and 1[ e~D II, = le, I for all j by (3), 

Lemma 2(b) (or rather the first remark following Lemma 2) implies that 

Thus 

II z c:~ 11. ~ Z lc, I" ~ 1. 

[ ~" cixi I = 

Hence since n and ca, . . . ,c ,  were arbitrary satisfying 

j = !  

I' II II f ( x ) ( ~ ' c i f  j)dx < f v" 

Z l cjl q < i: 
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Thus (xj) belongs to Xpw, and I[(xj)ll < Ilfllp" Hence by Theorem 3 and our 

remarks following it, P f =  ~ xffs belongs to Yp, and NPf[I._< K, Itsll 
Thus P yields a projection from L p onto Y of norm at most K~. Q.E.D. 

REMARK. Theorem 4 holds also for any sequence of independent complex- 

valued random variables f ,  of mean zero such that If ,  I is (0, 1}-valued for all n 

(here we obtain 11P I] < 2Kp). However we shall see shortly (in the corollary 

following Proposition 5) that in general, the span in L p of a sequence of inde- 

pendent random variables of mean zero, need not be complemented. 

COROLLARY. Let w = (w.) be any sequence of positive scalars, and let 2 < p < ~ ,  

Then Xp,w is isomorphic to a complemented subspace of L v. I f  inf.w. = 0, then 

Xp,w is an £~p space. 

PROOf. First assume that 0 < w. < 1 for all n. Rather than considering 

LP[0, 1], consider L p of the measure space I-[~= 1 { -  1,0, 1} with product measure 

1-1.~ a ~. where for all n,  p. is the measure on { -  1,0,1} defined by 

p .{ -1}  p.{1} = au'2p/(p--2)and p.{-1 ,0 ,1}  = 1 
~-  rv n 

Then put f . (x)  = x. for all x e I-[s~ 1 { -  1,0,1}. The sequence f l , f 2 , " "  satisfies 

the hypotheses of Theorem 4, and w. = IIs.ll /ll/.ll. for al l  n. (Of course, one 

can also explicitly represent the f . ' s  as being defined on [0, 1-t itself). 

To pass to the general case, we first observe that if w. > 1 for all n, then Xp,w 

is isometric to 12 . Consequently Xp,w is isomorphic to a complemented sequence 

of L p. Finally, if w is an arbitrary sequence, we let w', w" be its subsequences 

such that w'(n) < 1 for all n and w"(n) > 1 for all n. Then 

Xp,w ~ Xp,w, @ Xp,~. and Xp,w, @ Xp,,~,. 

is isomorphic to a complemented subspace of L p @ L p which is in turn isomorphic 

to L p . The second assertion of the corollary is an immediate consequence of 

the above and Theorem III of [10]. Q.E.D. 

REMARK: There exists a single sequence of simple functions whose span in 

the different /2 spaces is isomorphic to the space Xs mentioned in the intro- 

duction. For let (2.) be a sequence of numbers with 0 < 2. < 1, 2. ~ 0, and 

]~ 2. = oo. Let f l , f z , ""  be a sequence of independent symmetric {-1 ,0 ,1}-  

valued random variables with f oif.idt = L for all n. Let Y~ denote the closed 

linear span of thef . ' s  in /2 .  Then fixing 2 < p < ~ ,  Yp (resp. Y~) is complemented 
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and isomorphic to Xp,w (resp. to Xv,w)where (wn)=(2ntP-2)/~2v)), by Theorem 4. 

Thus Ys ~ X, for all 1 < s < c~ (of course w satisfies (1) for fixed 2 < p < c~). 

We pass now to the proof that Xp, w is isomorphic to an uncomplemented 

subspace of L p if w satisfies (1). To motivate the introduction of (1) we observe 

that if ]~ w2nP/tv-2)< ~ (for fixed p > 2), then by H/51der's inequality, 

for any sequence of scalars (x,), and consequently Xp,~, is isomorphic to I p in this 

case. If inf,,w, > 0, then Xp,w is obviously isomorphic to 12, so consequently if 

the positive integers split into two disjoint infinite subsequences (ni) and (m~) 

such that ~].Wnl2p/(p-2)((X) and infwm,>0 , Xpw, is isomorphic to IPO /2, 

None of these possibilities occur if and only if w satisfies the conditions 

(1') lira w, = 0 and F~ w2nP/~P-2)= oo for all e > 0 .  
W i t  "< ~. 

n---~ c~  

(1) is of course the simplest way in which (1') can occur. 

We shall prove later that if w, w' both satisfy (1'), then Xp,w ~ X~,w,. For the 

present, we wish to show that if w satisfies (1), then Xp,,~ is isomorphic to an un. 

complemented subspace of I P O  12. 

Throughout the end of the next proposition, p is fixed with 2 < p < ~ .  Let (e,) 

(resp. (b,)) denote the unit-vectors-basis in 1 p (resp. in 12). Given w = (w,), for 

each n let dn = en + wnb,, and let P?p,w denote [d,] in I p • 12 (we norm l P G 12 

by il(x,y)ll = max(llxll, Ilyll) if x~ l~  and y ZZ.) It is immediate that Xp,~, 

and -(p,w are isometric under the canonical map (Xn) ~ ~ ,~ 1 xnd,,. (It is also 

easily seen that the spaces Xp,w for arbitrary w, are isometric to all spaces in 

I p @ l 2 spanned by a "block basis" of el ,b l ,e2 ,b2, . . . ) .  ) 

PROPOSITION 5. I f  W satisfies (1), then (t ~ • 12)/Xp,w is not isomorphic to a 

subspace of  L p. Consequently Xp,w is uncomplemented in IP O I z. 

PROOF. Let (e*) (resp. (b*)) be the functionals biorthogonal to the en's (resp. 

the bn's). Thus (e*) (resp. (b*)) may be identified with the usual basis of I q 
(resp. IZ). 

For each n, put an = wne* - b*. Then (an) is a semi-normalized unconditional 

basis for ()?p,v~) ± with the following property: 

(an) is not equivalent to (bn), yet if (n') is any increasing sequence 

(4) of indices, there exists an increasing subsequence (n") of (n') 

with (an,,~j)) equivalent to (b j). 
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Indeed, for any sequence of scalars (xn), ~x,an converges if and only if 

Xlx.I~lw.lq<o~ and X l x . 1 2 < ~ ;  then II Xxoa. ll--(Xlx.l~lwol') 1'~÷ 
( X I xnl2) "~. I f (a , )  were equivalent to (b,),  there would exist a K > 0 such that 

11 x xna. l[ _-_ K( X Ix.l~) 1;~ for any sequence of scalars (xn). Then fixing N and 

putting xj = w~/(2 -q) for 1 =< j =< N,  we have that ~jN= 1 Xjwjq q = z.,,~j~'~N= l'"2q/(2"j -q)____ 

( ~ N  w2q/(2-q),~l/2 "-'i=1~N x 2J. Thus we would have t h a t  ()-~j=IN w2q/(2-q)) l i q < J  = K t'~j=l j J 

o~ %2~/~2-q) < oo. But 2 q / ( 2 - q ) = 2 p /  or g,s W 2q/t2-q) ~ K  2 q / t q - 2 )  whence _j=~ 
~- ')  = 1 j - -  , " 

( p - 2 ) ,  thus our assumption that (wn) satisfies (1) would be contradicted. Hence 

(an) is not equivalent to (bn). 

Now let (n') be an increasing sequence of indices. Since w n ~ 0, we may 

choose (n") an increasing subsequence of (n') with ~Ei_-°° 1 w~Z,,~) 2-q)< ~ .  Then by H61- 
q q der's inequality, ~ I~Jl w~,,(~, =< ( x I x~l~) ~ (x,,~,,(~,2q/(2-q)ac2-q)/2, for any scalars 

(xj). Thus ~E xjan,,~j) converges if and only if ~ [xj 12 < ~ ; thus we have proved 

that (a.) satisfies (4). 

Now let (a*) be the members of [()?p,~)±]* biorthogonal to the a.'s. Then 

(a*) is also a semi-normalized unconditional basic for [()?p,w)±] * , satisfying (4) 

(with " a "  replaced by " a * " ) .  Now it follows from results of Kadec and 

Pelczynski (Theorems 2 and 3 of [4]), that if (Zn) is a semi-normalized uncondi- 

tional basic sequence in /_Y, then either (z,) is equivalent to (b,,) or some sub- 

sequence of (z,) is equivalent to (e,). We have thus proved that [()~p,~)±]* is 

isomorphic to no subspace of L p, since (a*) is equivalent to no unconditional 

basic sequence in L p. Of course [()?p,~)~]* is isometric to (l p @ 12)/~.~,  so 

the proof  is complete. 

REMARKS. 1. Assume w satisfies (1). Now it is known that 12 is isometric to 

a subspace of L ~ (cf. [7]). Thus if we norm It '~l 2 by III x • y III = (11 x l[ ~ + II Y [[~)1/~ 

if x 6 l  p and y ~ l  2, then ()7~,~, II1" III)is isometric to an uncomplemented sub- 

space of L p. We suspect that ()?p,w, I11 III)is not isometric to any complemented 

subspace of L p. 

2. We obtain from Proposition 5 a space with an unconditional basis, namely 

I p @ 12 and its basis (el, bl, e2, b2 , ' " ) ,  and an uncomplemented subspace spanned 

by a block basis with the blocks of length two, namely Xp,w (for w satisfying (1)). 

See the second remark following Proposition 11 below, for further observations. 

COROLLARY. There exists a sequence f l , f 2 , " "  of independent 6-valued sym- 

metric random variables, each of mean zero, such that Yp, their closed linear 

span in L p, is uncomplemented for  all p ,  2 < p < o0. 
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PROOF. Let gl, g2,"" be a sequence of independent symmetric random variables 

so that for all n = 2,3,- - . ,  g2,,-2 is { - 1 , 1 }  valued, g2n-3 is {-1,0 ,1}-valued,  

and f~ lg2 . -a[d t  = (nlog2n) -1 • L e t f . _ l  = g2n-3 + (1/x/n)g2.-2 for all such n. 

Fixing p > 2, we have that ![ g2.-a [12/[[ g2.-3 lip = (nlog zn)I/p-1/2 since 

Ig2.-a[ is the characteristic function of a measurable set, whence 

()1 g~.-3115/11 g~.-3 IIp~ ~'`p- ~> = ~ n- l  log -2n < o0. 
n = 2  n = 2  

Let Zp denote the closed linear span of the g. 's in LP; then by Theorem 4 and 

the proof  of the Corollary immediately ~ollowing, T: I p @ l 2 ~ Zp is an iso- 

morphism, where T is defined by 

= ~ (0~,, I[ g2.-1 I[; 1 g2.- i  + fl.gz.) 
n = l  

for all scalars ~., , .  such that Z t ~. l" < ~ and Z I,.I 2 < oo. 

Moreover, letting w = (w.) be defined by w._~ = (logn)2/pn 1/p-1/z for all 

n = 2, 3, .-., then w satisfies (1) and T(Xp.w) = Yp. Since )7.,~, is uncomplemented 

in l p ® 12 by Proposition 5, Yp is uncomplemented in Z.  (and consequently in 

LP). Q.E.D. 

REMARK. By the proof of Theorem 4, Z~ is complemented in L q and "na tura l ly"  

isomorphic to Z* i.e. to I q ® l 2 . It is then easily seen that for all 1 < q < 2, 

Ya is complemented in L q and isomorphic to I q. Now if we define 

f ' -1  ~--g2,,-3 + 1/(x/nlog2n)g2n-2 for all n > 2 and let Y" be the closed linear span 

of t h e f " s  in /2 ,  then again Y,~ is complemented in L p and isomorphic to l ~ for all 

2 < p < oo. Moreover fixing 1 < q < 2, Yq' is isomorphic to no complemented 

subspace of L q, by Proposition 5. For it can be seen that Y£ is isomorphic to 

(X~,~) , where w is as in the proof  of the Corollary. 

We have now demonstrated that for all 2 < p < oo, there exists a complemented 

subspace of L p isomorphic to an uncomplemented subspace of L p. This result 

alone is sufficient to deduce the analogous fact for 1 p. Because of our knowledge 

of Xp,w given by Proposition 5, we can obtain more information, yielding a partial 

answer to problem 4a of [10]. 

THEOREM 6. Let 2 < p < co. Then there exists a closed subspace X of l p 
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such that X is isomorphic to I p, yet IP/X iS isomorphic to no subspace of L p. 

(Consequently X is uncomplemented in lP). 

PROOF. Let (wn) satisfy (1), let Z n --- span {ei, bj: 1 < j < n) and 

Xn = span(ej-t-wjbj: 1 < j < n) in lPO 12. (Thus Z n equals I. p • l 2 and X~ 

equals the span of the first n-basis elements of Xp,w). We shall prove that 

(a) (~=~ O Z ~ ) J ( ~ = 1 0 X ~ ) p  

is isomorphic to no subspace of LP; 

are each isomorphic to ft. Theorem 6 follows immediately from (a) and (b). 

To see (a), put d~=inf{d(Z,/Xn, Y): Y is an n-dimensional subspace of LP}. We 

shall show that dn ~ oo. Letting (a*) be as in the proof of Proposition 5, the span 

of a*,...,an* in [(J?p,~)J-]* is isometric to Z~/X~. Evidently dn =< d,,+l for all n. 

If there were a 2 < oo with d, =< 2 for all n, we would obtain that for every finite 

dimensional F ~  [(~p,w)±] *, there would exist a B =  L p with d(F,B)<= 22. 

Then by a result of Lindenstrauss and Pelczynski (Corollary 2, p. 306 of [7]), 

we would obtain that [()~p,w)±] * is isomorphic to a subspace of L p, contradicting 

Proposition 5. Thus d, ~ oo, and (a) is proved. 

(b) is an easy consequence of Theorem 4 and a result of Pelczynski. His result 

implies the following 

LEMMA. Let 1 < p < oo, and Y1, Y2, "'" be a sequence of non-zero finite 

dimensional Banach spaces, such that there is a constant K ,  and for all n a 

subspace Wn of L p, with d(Y~,W~) < K and a projection Pn:L p ~ Wn with 

HPnlI < K .  Then ( ~ ° ° _ 1 0  Y.)p is isomorphic to I p. 

The lemma implies (b), for by Theorem 4 setting Y, = Z. or Y. = X, for all 

n ,  and letting 2 < p < oo, then ]11, Y2,"" satisfies its hypotheses. 

To see the lemma, we obviously have that ( E ~= 1 0  Y~)p is isomorphic to 

( ~, ~= ~ • W,,)p. For each n, we may choose a subspace F~ of L p , such that letting 
p = oO m,, = d imF, ,  d(F,, Ira.) < 2 and W, = F, .  Thus ( ~ ~ = 1 • W~)p is complemented 

in ( ~ , , ~ 1 0 F , , ) p  and obviously ( ~ ° ~ = 1 O F , )  p is isomorphic to ft.  Hence 

( ~ ~= 1 • Y,,)p is isomorphic to an infinite-dimensional complemented subspace 

of I p, so ( ~ ~= 1 • Y~)~ is isomorphic to l ~' by Theorem 1 of [14]. Q.E.D. 
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By the results of [7], every infinite-dimemsional Lap-space contains a com- 

plemented subspace isomorphic to if ,  1 < p < oo. It can also be deduced by 

a compactness argument that if I p contains an uncomplemented subspace iso- 

morphic to I p, then there exists a constant 2p such that for all M,  there exist 

integers m < n and a subspace B of l~ with d(B, IPm) < 2p, such that if P is a pro- 

jection from l~ onto B, then II PII >= M.  Now it was previously known that 

4 (c.f. [9]" I p contains an uncomplemented subspace isomorphic to I p if 1 < p <~- 

indeed this is a consequence of the known fact that for 1 < p < ~, L p contains an 

uncomplemented subspace isomorphic to l z ,  c . f .p .  52 of [18]). The following 

corollary may be deduced from the above facts and Theorem 6. 

COROLLARY. Let  l < p < - ~  or 2 < p < oo and let B be an inf ini te-dimensional  

Lap space. Then there exists  an uncomplemen ted  subspace of  B ,  isomorphic  to 

l p. I f  B is separable,  there exists  a sequence B~,B2, . . .  o f  f in i te  d imens ional  

subspaces of  B ,  with B a c B 2 c ... and B = U B ,  and a constant  A> 0, such 

that d(B, ,  p lm . )<  2 where m, = d i m B , ;  and such that p, ~ oo , where 

P, = inf{l[ P II: P is a project ion of  B onto B , } .  

REMARKS. 1. The isometric version of the above corollary applied to 

LP(v) spaces, fails to be true. Indeed by using the appropriate analogue of Lemma 

3 of [14] for LP(IO and a compactness argument involving the weak* operator 

topology (as in [6]), one can see the following: Let  li and v be measures on pos- 

s ibly  dif ferent measurable  spaces, 1 <= p < ~ ,  and A be a closed subspace 

of  LP(v) isometric to LP(~). Then  there is a projection f r o m  LP(v) onto A of  norm 

one. (For the case p = 1, one must also use that LI(~) is the range of a contractive 

projection in its double dual). (The fact that isometric imbeddings of l p in L p 

are complemented, is due to Pelczynski [14]). 

2. In the following remarks, let p > 2, and assume w satisfies (1). In the 

appendix, we give a direct constructive proof of the facts that )~p,w is uncom- 

plemented in I p @ l z, and that ( ]~ if= 1 ® X,)p is uncomplemented in ( • ~= 1 @Z~)p. 

We shall also prove later, independently of the above reasoning, that Xp,w is 

not a continuous linear image of I p ® l 2 . (Thus three independent proofs are 

given that Xp,w is uncomplemented in lP@ 12). 

3. It follows from Proposition 5 that k~.w is isomorphic to no complemented 

subspace of L q, and from the proof of Theorem 6 that ( Y~=x ® [ a l , " -  a,])q 

is not isomorphic to 1 q (where a l , a 2 , . . ,  is as defined in the proof of Proposi- 
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tion 5). This seems to yield the most easily proved example of the existence 

(previously known) of a closed subspace of l q of infinite dimension, non-iso- 

morphic to I q, for all i < q < 2. (The existence of such a subspace for 2 < q < oo 

remains an open problem. Such a subspace exists if the answer to the following 

question is affirmative: Does there exist a closed subspace of /Y which is not 

an .L, eq space?). 

4. Linear topological investigation of the spaces Xp, w. 

Let w be any fixed sequence of positive numbers, and let 2 < p < o0. We begin 

our investigations by showing that the "na tura l"  block bases of Xp,w span spaces 

isometric to Xp,~, for some w', and are the ranges of norm-one orthogonal pro- 

jections. 

Let (g~) be the unit-vectors in Xp,~ (i.e. (gn)j = 6~i for all n,j positive integers). 

It is obvious that (g,,) is an unconditional (but incidentally not necessarily) a 

normalized basis of Xp,~. Now we define 

(x ,  y )  = ~, x~p~w 2 for all x, y ~ Xv, ~ 

(where x = (xi) = ~ x~g~ and similarly for y; 37i denotes the complex conjugate 

of Yi). Thus the norm on X p.w is the maximum of two norms, II  112 and I1 I[p, 

where 

tl x lip = ( ~' I x, I p)'/p and II x 112 = ( x , x )  '/2 = ( ~ [x,12w~)l/2 

By the "na tura l"  block bases of Xp,~, we refer to sequences consisting of the sums 

of disjoint blocks of the elements w2/tp-2)g,. (The choice of the constants w 2/~p-2) 
2 2 comes from setting c~ = c~wn.) 

Our next result is a crucial tool in determining the linear topological properties 

of the spaces Xp,~. 

LEMMA 7. Let E l ,E: ,  ... be a sequence of disjoint f inite subsets of  the 

integers. For each j ,  put 

f j  = ~ w~/~P-2)g,,, flj = ( E w~P/~"-2)) ~p-z~/2p, and 
n e E j  n ~ E j  

f J = [I f j [Ip lfj (= flj-2/(p-2)fj). Let Y denote the closed linear span of  the f j's in 

Xp,w. Then (fi) is an unconditional basis for  Y, isometrically equivalent to the 

unit-vectors-basis of X,,cpj) and there is a projection P f rom X, ,~ onto Y with 

lIPI1 = 

PROOF. Put Sy = fl]p/p-2 for all j .  Note that 



Vol. 8, 1 9 7 0  INDEPENDENT RANDOM VARIABLES 289 

Now let 2 i, 

n E E I  

• . . ,2, be given scalars. Then 

j neEj  

z Ix;l" z ,  : , " . - : ' -  ~ la~l" ~j, and IIV n - -  
j n E E j  

n e E j  

Hence 

(5) II EZJfxll = max{( E I~ , l "oJ)"" ,  (zlzJl2<b)'/~}, 
from which it follows immediately that (j~) is isometrically equivalent to the 

unit-vectors-basis of Xp,(~). 

We shall now show that orthogonal projection yields a projection of norm 

one from Xp,w onto Y. 

We define P: Xp ~ ~ Y by 

(6) Px -- Z < x ,  m: > IIDII~:s~ for all x~Xp,w. 
J 

To show that P is a well-defined projection onto Y, of norm-one, it suffices to 

show that fixing x ~Xp,w, the series in (6) converges in both the norms 11"112 

and I1" ilp, and that [I Px [[, <- [I x [[, for r = 2 and r = p. But since P is ortho- 

gonal projection with respect to ( • ), we have immediately that the series con- 

verges in ]]" []2 and that [I Px []2 =< l[ x ]12. 

Now fix j ,  and put 

1 ~ x,,w~(t,_t)l(p_2) 
,~  - -  <x,f~> II f~ II; ~ - ~ ,o ~, 

(where x = (x,)). Then 

Ix~l " =  ~;" 1 z XnW~"'"-')i<'-z'lP 
neE j  

neE j  neE.# 

by H61der's inequality. But 

Hence 

(7) 

neEd 

I~Jl" =< 6; 1 z Ix.I,. 
n e E j  
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II Px II~ = I1 y~ 2ff j  II; 

j n e E j  

< Ilxll . Q.E.D. 

REMARK. It follows from Lemma 7 that if E w 2r/`p-2)= o0, then there exists 

a subspace Y of Xp.w isometric to l 2 and a projection of norm one from Xp,~ 

onto Y. We simply choose El,E2, . . .  such that 1 < (Y-'m~E~ 2Pm/(P-2))(P-2)/2P 

and let Y = [)~] where the f f s  are defined as above. 

COROLLARY 8. Let p> 2 and let w satisfy (1). Then for  all positive integers n, 

there exists a basic sequence (hi) in X*w (resp. (fj)  in Xp,w) equivalent to the 

usual basis o f  l 2 , such that for  any n distinct elements hi, , . . . ,h~ (resp.f i l , . . . , f , . ) ,  

(hh,.. . ,hi.) is isometrically equivalent to the unit-vectors-basis of  l~ (resp. 

( fh," ' , f~.)  is isometrically equivalent to the unit-vectors basis of  l~). 

PROOF. Fix n. Since w satisfies (1), we may choose an infinite sequence 

E~,E2,.. .  of disjoint finite subsets of the integers, such that for a11j, putting 

flj = ( g w2P/(P-2)) (p-2)/2p, 
m ~Ej 

then 
(8) 2-  l n ( 2 - p ) / 2 P  ~ f l j  ~ n ( 2 - p ) / 2 p  

Now put ~ = R-2/(p-2)~~ w 2](p-2)~ P j  .a.am~Ej m ,Sin for all j .  Then by Lemma 7, there exists 

a projection P from Xp.~ onto Y, the closed linear span of the ~ ' s ,  of norm 1, 

and (fj) is isometrically equivalent to the unit-vectors-basis of Xp,(~j). Since 

2-~n(2-p)/2P=< fli =< 1, the unit-vectors-basis of Xp,(p~) is equivalent to the usual 

basis of 12 , and each unit vector has norm one. 

Now let Pj: Y ~  Y be the projection with one-dimensional range defined by 

Pj( 2 x,f~) = x j ~ ,  and put hj = (PjP)*(~) for all j .  Then since P and P2 have 

norm one for all j ,  (hi) is equivalent to the usual basis for 12 . 

Now let n distinct positive integers i~ ... i~ be given. Then for any n scalars 

X 1 , " " , X n ;  

Ixjl2  Ixjl 
j =  , , j  1 j = l  

Xj  
j = l  
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where the first inequality follows from H61der's inequality and the second one 

from (8). Hence II Z ~=1 xjfi~-II = ( ~ ~-=11 xjlp> l'p, so ( L  . . , L ~  is isometri- 

cally equivalent to the usual basis of 1, p. Since the unit-vectors of Xp,(a~) have 

norm one, Pi, + "'" + Pin is a projection of norm one. Hence (hi~,...,hi.) is iso- 

metrically equivalent to the dual basis of (J i l , ' " , f io) ,  i.e. to the usual basis of 

l~. Q.E.D. 

Let us say that a Banach space X satisfies P2 if  given any basic sequence (e~) 
in X equivalent to the usual 12 basis, then for all e > O, there exists a subsequence 

(%) with (%) (1 + e)-equivalent to the usual 12 basis. 

Now let p > 2 and let w = (w,) be a sequence satisfying (1). It follows easily 

from Corollary 8 that Xp,~ is not isomorphic to any Banach space satisfying P2" 

THEOREM 9. Let p and w be as above, and let A be a closed subspace of 

ft. Then Xp,~ is not a continuous linear image of (12 0 12 ~ "..)p (~) A .  

It follows from this result that Xp,~ is not a continuous linear image of A • 12. 

Thus in the language of ~17], Xp,~ is a closed subspace of the direct sum of two 

totally incomparable Banach spaces, yet Xp,~ is not isomorphic to the direct 

sum of a subspace of each of the two spaces. 

To prove Theorem 9, we prove the equivalent assertion that * Xp,~ is not iso- 

morphic to a subspace of (l 2 (~ l 2 ~ "")q (~) B where B is isometric to a quotient 

space of I q. In view of our remark preceding Theorem 9, this is in turn an im- 

mediate consequence of the following lemma: 

LEMMA 10. Let l < q < 2 and let B be isometric to a quotient space of 

l q. Then (12 G 12 • "" )q • B satifies P2. 

We break the proof into a number of steps, most of which involve standard 

"sliding hump"  arguments. 

SUBLEMMA 1. l 2 satisfies P2. Moreover every sequence in l 2 tending to zero 

weakly, but not in norm, contains a subsequence which is a basic sequence equi- 

valent to the usual basis for 12 . 

This assertion follows from the arguments and results of Bessaga and 

Pelczynski [1]. 

SUBLEMMA 2. Let N be a fixed positive integer, and let ( l Z E ) . - .  (~ 12)q be 

the direct sum of N-copies of /2 ,  in the l ~ norm. Then (l z @ ... @ 12)q satisfies PE- 

PROOF. The members of (l 2 O "'" O 12)q consist of N-tuples x = (x~,...,xN) 

where x I e 12 for all i. Let Pi(x) = x~ for all such x.  Now let (e,) be a basic se- 
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quence equivalent to the usual basis for  12 . Let (e~) be a subsequence of  (e D so 

that  for  each i,  litany® II Pt(e'~)II exists. Put  s i = l i m , ~  II P,(e' )II for  1 _< e _< N, 
and s = lim,_~® I1 e', 11" Then o f  c o u r s e s  = ( ~ 7=1 sO) 1/q > 0.  Now let e > 0.  

Choose el such that  (1 + 2e~)/(1 - el) < 1 + e. For  each i, P~(e)) -o 0 weakly 

as j -~ oo. Thus in virtue of  Sublemma l ,  we may choose a subsequence (e~) 

of  (e~,) such that  for  all  scalars q,c2,  ... and all i, if  s t ~ 0,  then 

si(1--~;,)(.~,l¢j12) '/e <: [IXjcjP,(e~)lt <= s,(1 + . o ( X l c ,  l:) ''~ 

while if  st = O, then 

and 

Thus 

• s(:c II x jet(e;)li = 

> s ( 1 - ~ 1 ) (  X . ,a 

tl x c2e' j II ~ (1 ~ ~0(  X {szlq)l/q( ~ [cj]2) 1/2 "~ 81S( X [Cjl2) 1/2 

= s(1 + 2~ 15 ( .~, I cj [2)1/2 

/ - -  ~. P l x  l !  f rom which it fol lows that ts e j } ,  and hence (ei) , is (I + e)-equivalent to the usual 

basis for 12. 

For the next sublemma, we need the fol lowing definition: Given any sequence 

x = (x j) with x( j )~ 12 for  all j ,  and any n,  let T,(x) = y where y = (y(j)),  
y(j) = x(j) for  a l l j  > n and y(j) = 0 for  j < n.  

SUBLEMMA 3. Let  1 =< q < 2  and let X be a subspace of  ( / 2@12@. . . )q ,  

isomorphic  to 12 . Then  I[ T,[X  I1 -o 0 as n ~ oo. 

PROOF. Suppose the conclusion is false. Then since II T,(x)It >-- I[ T,+l(x)ll 
for  all x e (12 @ 12 @. . . )q ,  we can choose a a > 0 and a sequence (x,,) of  elements 

of  X with II r xn II = a and [1 x,  I[ = 1 for  all n.  Since X is reflexive, we can choose 

a weakly convergent subsequence (x~ 1)) of  (x,) .  Since II Tn(x) ll ~ 0 for  all 

x s (/2 @ 12 @.. . )q ,  we can choose ql  < q2 < "'" integers such that  

II zJ4',  )) II < a2-(t+ a) 

for  all i > j .  Now put nt = qgt and e~ = x q : , -  Xq~,_, for  all i = 1 ,2 , . . . .  We 

then have that  II ei ]l =< 2 for all i ,  e; + 0 weakly, and 
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(9) 

Now 

by (9). 

I1DII <-- 
f j(e s) = 
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3/5 
II Tn,(ej)[l< c52 -(~+ 1) and II Tng(eJ ) I] > ~ for all i and j with i > j .  

put ~j = (T,s - Tnj+ 1)(ej) for all j .  Fot eachj  we have that 1[ ~j II __> 8/2 

Hence we may choose fg e (T,j - T,s+~)*[(/2 @ 12 @...)~], such that 

2/c5, and fJ(gs) = 1. Of course f,(x) = fiTi(x) for all x.  Thus fj(ej) = 
1. Moreover if i > j ,  then Ij<,(ej) l hence by (9), 

Ifi(es) I =< 112i. 
Since e s --+ 0 weakly, we can choose m, < m: < ... such that [f,,,(em,)l < 1/2 ~ 

for all i < j .  Then choosing N such that 112 N-4 ___ 3, we have that 

1 
(10) ]g [f,,,(em) l<  ~ holds for all j =>_ N.  

i_>_N 
i@j 

Now define a projection P onto [~,,j : j  > N] by P ( x ) =  Z,i°°__Nfm,(x)e~, 
for all x e (/2 (3 12 G " ' ) q .  Then by (10), l] P(e,n,)i[ ---- ,$/4 for all i > N,  yet 

(~mj:J > N) is a basic sequence equivalent to the usual basis of I q. Since every 

operator from 12 to l ~ is compact (c.f. page 206 of [16]), P IX is compact, 

and thus tl P(em,)tl -+ 0 since (e,,) is a sequence of elements of X tending weakly 

to zero. This contradiction completes the proof of Sublemma 3. (The above 

argument holds in more general situations; see Remark 3 below.) 

Lemma 10 now follows easily from the last two Sublemmas together with the 

observation that if T:l  2 --+ B is a given operator, then T is compact. (Indeed 

then T* is an operator from a subspace of I p into 12 , so T* is compact by Theorem 

A2, page 206 of [16]). 

REMARKS. 

1. Given any I __< r < oo, we can of course define the property P, by simply 

replacing " 2 "  by " r "  throughout the definition of P2- Then the proof of Sub- 

lemma 2 shows that for any 1 __< q < oo and any positive integer N,  the N-fold 

sum of l', ( l 'O ... q)l')q, satisfies P,. 

2. Given any 1 __< r < oo, let us say that a Banach space X satisfies Q, if there 

exists a K < oo such that for every basic sequence (xn) in B equivalent to the 

unit-vectors-basis (e,) of l ' ,  there exists a subsequence (xns) K-equivalent to (e~). 

Evidently if X is isomorphic to a space satisfying P, ,  then X satisfies Q,. 

Now Corollary 9 shows that if 2 < q < oo, and if w satisfies (1), then Xp,w 

does not satisfy Q2, hence, neither IP@ 12 nor (/2(~ 12(~ ...)q satisfies Q2. Thus 
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Sublemma 3 is false for 2 < q < ~ .  For Sublemma 2 is true for all such q, and 

these two sublemmas constituted the proof  that (l 2 @ 12 @ .-.)q satisfies P2 for 

l < q < 2 .  

3. Sublemma 3 holds for q = 1 also, of course; and the proof  given shows 

that the following generalization holds: 

Let 1 < q < ~ ,  let Xa,X2,  "'" be given Banach spaces, and let X be a reflexive 

subspace of ( ~ ,  (g Xi)q such that every operator from X into I q is compact 

(automatic if q = 1). Then ][ T. IX ]1 ~ 0 as n --* ~ ,  (where T.(x)( j)  = x( j)  for 

all j >= n, T.(x)(j)  = 0 all j < n; all n). 

In particular, it follows that if i < q < 2, X~ c L q for all i ,  and X c ( ~ ( 9  X,)q 

is such that no subspace of X is isomorphic to I q, then X is isomorphic to a sub- 

space of (X1 (9 "'" (9 X,)q for some n. (For then every operator from X to l ~ is 

compact, c.f. page 211 of [16]). Since Sublemma 2 is valid for all r ,  we also ob- 

tain the following result: 

Let 1 < q < r < oo. Then (l" (g l" (9...)q satisfies P,. 

We now consider the intrinsic linear topological properties of the spaces Xp,w 

for w saiisfying (1'). We wish to demonstrate that any two such spaces are iso- 

morphic. Toward this end, we shall show that Xp,,~ is isomorphic to its own 

square; in fact Xp.w is isomorphic to a symmetric sum of itself. 

DEFINITION. Let Y be a given Banach space. The Banach space(Z,  II II) 
is said to be a symmetric sum of Y if Z is a subspace of yoo (the space of all 

infinite sequences of elements of Y) satisfying the following properties: 

(i) y~  c Z and Y~ is dense in Z ,  where Y~ consists of all members of Y~ 

that are ultimately zero. 

(ii) For all ( y . ) ~ Z ,  permutations a of the positive integers, and sequences 

(~.) of scalars with 15.1 < l for all n, (e .y . ( . ) )eZ and 

(11) 

Given a norm I[" II = s  defined on Yo ~ and satisfying (11) for all (y , )~ Yo ~, 

there exists a unique symmetric sum of Y, call it Z ,  such that the norm on Z 

agrees with s on Y~. Accordingly, we refer to a symmetric sum (Z,s) of Y 

by (Y (9 Y (9 ...),, and refer to the norm s as a symmetric norm on Z.  (For a 

description of norms on subspaces of Y ~ equivalent to symmetric ones, see the 

first remark following the next result.) 

PROPOSITION 11. Let Z = (Y  (9 Y (9"")~ be a symmetric sum of the Banach 
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space Y. Then Z ..~ Z @ Y,,~ Z ~ Z .  I f  Z is isomorphic to a complemented 

subspace of Y, then Z and Y are isomorphic. 

PROOF. The assertions are straightforward, except possibly the last one. We 

recall the result of Pelczynski [13] : i f  each of two Banach spaces is isomorphic 

to its own square and a complemented subspace of the other, they are isomorphic. 

Now obviously Yis isomorphic to a complemented subspace of Z ,  since in fact 

Z ,-~ Z 0) Y. If Z is isomorphic to a complemented subspace of Y, then there exists 

a closed subspace A of Ysuch  that Y ~ Z G A .  Hence Y O Y ~  Yq) Z ( ~ A  

.~ Z q)A ~ Y, so by this result of Pelczynski, Y ~ Z.  

REMARKS. 

1. If Y is the one-dimensional space, then a symmetric sum of Y, (Y ~ YO"")s ,  

is simply a canonical representation of a symmetric space as defined in [15]. 

Moreover, one has the following Proposition generalizing the known result 

for symmetric spaces (c.f. [19]): Let p be a complete norm on a subspace Z of 

Y~ satisfying (i) and (ii)': For all ( y , ) ~ Z  and permutations tr of the positive 

integers, (y~(~))~Z. Then there exists a symmetric norm s on Z equivalent 

to p.  

2. Proposition 5 shows that there exists a two-dimensional Banach space Y, 

a symmetric sum of Y, (Y • Y • "")s, and one-dimensional subspaces B~ of Y 

such that (B 1 O B2~)'..)s is uncomplemented in Y. Indeed we let Y be 

l~ ° and let (Y @ Y @ ...)~ be all sequences ( (x , ,y , ) )  ~ y~o such that s((s,,y.)) < co, 

where s((x, ,y,))  = max {(Zlx.Y) ',p, ( z I y.12)'2}. Now let 2 < p < oo, let w 

satisfy (1), and let B i = {(x, wjx): x is an arbitrary scalar}. Then (Y 0) Y G "")~ 

is canonically isometric to t p @ l z and (B 1 • B2 • "")~, is canonically isometric 

to its subspace )?p,w. 

Now of course if Y is a given Banach space, and 1 < p < oo, then (Y 0) Yt~ ..-)p 

is a symmetric sum of Y. However we are interested in a different sort of  symmetric 

sum of the spaces Xp,w. In the following, let 2 < p < oo be fixed, and let w = (w n) 

be fixed satisfying (1'). Recall that we defined Ilxll~ = ( z Ix°12w.~y ,~ and 

11 x liP= ( z I x~lp) ''p for all x = (x,) in Xp,w. 

DEFIr~mON. Let Z be the set of all members (y,) of X~,w satisfying ~: H y. 1t22 < ~o 

and ~ Ii y°ll; < oo, and d e f i n e s =  I1" II on Z by 

II (y.)ll = max{( X !1 y.IIY "~, (: :c II y. []~)'/p}. 
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It is trivial to verify that s is indeed a symmetric norm on Z .  (Of course s de- 

pends on p and w.). 

PROPOSITION 12. Xp, w is isomorphic to Z = (Xp,w O)Xp,w • "")~. 

PROOF. By Proposition 11, we need only show that Z is isomorphic to a com- 

plemented subspace B of Xp, w. Since w satisfies (1'), we may choose N1, N2,--- 

disjoint infinite subsets of the positive integers such that for each k, 

~.a W 2p/(p-2)~- (7)0 and lim % = O. 
N E N k  n'-~<~ 

n ~ N  k 

Fixing k,  we may choose Ek,E k, . . .  disjoint finite subsets of Nk such that 

putting flj,k = ( Y-,, ~ ~W,2P/(P-2)) (~-2)/2p, 

then 

(12) wj < flj,k < 2Wj for all j .  

Now let ./~,k_[ O _  I,e,J, k!'~- 2/(p- 2)~'z..an ~ Ejk'"2/(P- 2) n ' , v ,  S,, let Xk be the closed linear span of 

{~,k: J = 1,2, . . .} ,  and let B be the closed linear span of {)~,k:J = 1,2,---; 

k =  1,2,-. .}.  

By Lemma 7, B is complemented in Xp,w. It is also easily seen that y e B if 

and only if there exists a sequence (y~) with Yk e Xk for all k with ~II Yk II 2 < O0 

and • l] Yk lip p < o0, and y = ]~ k%t Yk; if y e B, this sequence (Yk)is moreover 

unique, and 

(13) llyll = max{( 2 II y ll ) ( Ily llg)*/'}. 
Now again fixing k, by Lemma 7 (fj,k)j% ~ is isomorphically equivalent to the 

unit-vectors-basis of Xp,(~j,~)~,. But by (12), the unit-vectors-basis of 

Xp,(aj.k)j7l is 2-equivalent to the unit-vectors-basis of Xp,w. It follows from (12) 

that defining Tk: Xk ~ Xp,w by Tk(y ) = Yj%gj  if y = ~iC~j~,k, then Tk is an 

isomorphism with 

(14) {[YII < llZ (y)l I < Ilyll for all y ~ X  k. 
2 = = 

We may now define an isomorphism T:B- -+Z as follows: for each b e B ,  

choose the unique sequence (Yk) with y k e X k  for all k and b = ~, Yk. Let 

[T(b)]k = Tk(Yk) for all k. It then follows easily from (13) and (14) that T is a 

surjective linear map with --Ilblt < [i r(b)[i < Ilbl t for all b e B .  Q.E.D. 
2 = = 
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THEOREM 13. Let 2 < p < oo, and let w and w' satisfy (1'). Then Xp.,~ is 

isomorphic to Xp,w,. 

PROOF. By Propositions 11 and 12, Xp,w and Xpw, are each isomorphic to 

their own square. Hence by the result of Pelczynski mentioned in the proof  of 

Proposition 11, we need only show that each is isomorphic to a complemented 

subspace of the other. It suffices by symmetry, to show that Xp,~, is isomorphic 

to a complemented subspace of Xp,w. Choose El ,E2 , . . .  disjoint finite subsets 

of the integers such that putting 

flS = ( ~" w~el( t ' -2))  (e-2)12p 
n e E j  

# 
for all j ,  then wj __< fls ---< 2w~. for a l l j .  Then definingf  s as in kemma 7, it follows 

immediately from that result, that the closed linear span of the f j ' s  is comple- 

mented and isomorphic to Xp,w,. Q.E.D. 

REMARK. We actually have that there exists an absolute constant K such 

that d(Xp,w, Xp,w,) <= K for any 2 < p < c~ and any w,w' satisfying (1'). 

We wish finally to consider the new ~ p  spaces generated by our methods. 

Let p > 2, and let Xp denote Xe,,, for any sequence w = (w.) satisfying (1'). 

We then define Xq by Xq = X*. Our results of course show that X e is different 

isomorphicalIy from the previously known ~ e  spaces. We obtain another new 

isomorphism type among the 5¢ e spaces as follows: For each positive integer n, 

let Be, . consist of all square summable sequences (xs) of scalars under the norm 

1[ (xs) l[.,,," = max {n -(e-2)12p( ~ IXj[2)l/2, ( ~_. i ~le),,e). 
Now of  course Bp,. is isomorphic to 12 . However the span of any n-unit-vectors 

l.) ~ oo as n ~ oo). Since B~,. is none in Be, . is isometric to I. p (whence d(Bp,., 2 
other than Xr. p where fl(j) = n - ( e - z ) / 2 p  for all j ,  it follows from Lemma 7 

and the proof  of Corollary 8 that for each n, there exists a subspace /~e,. of  X e 

with d(Ep..,Be..) < 2 and a projection of norm one from X e onto /~e.,," Thus 

defining B e = (Bp,1 @Be2 G"')e ,  Be is isomorphic to a complemented sub- 

space of L e and evidently not isomorphic to 12, so B e is an ~ e  space by the 

results of [10]. For 1 < p < 2, define B e = B*. 

COROLLARY 14. Let 1 < p <  oo, p # 2. Then Le, le, leO) l 2, ( 1 2 ( ~ 1 2 ( ~ ' " )  e ,  

Xe, and Bp are mutually non-isomorphic. 

PROOF. It suffices to prove this for 2 < p < oo. (It is proved in [7] that the 

first four spaces listed are mutually non-isomorphic.) Now B* is not isomorphic 
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to any Banach space satisfying P2 (where P2 is defined preceding Theorem 9). 

Hence, by the proof of Theorem 9, Bp is not a continuous linear image of 

(12 ~)/2 ~)...)p ~) Z where A is any subspace of I p. Thus Theorem 9 implies that 

neither Bp nor Xp is isomorphic to I p, IPO 12, or ( /2~)12~ ...)~. By the proof 

of Sublemma 3 of Lemma 10 (c.f. the third remark following Lemma 10), every 

subspace of B* is either isomorphic to 12 or contains a subspace isomorphic to 

l ~. Since L q contains a subspace isomorphic to l' if q < r < 2 (c.f. [7]), Bp ,~ Lp. 

Finally to see that Xp ,~ Bp and Xp ~ L p, we observe that (/2 t~) 12 ~) ...)p is iso- 

morphic to a complemented subspace of Bp. (This follows immediately from 

the remark following Lemma 7.) However (12(~ 12~)...)p is not isomorphic to 

a subspace of Xp, in fact we have the 

LEMMA. (12E) 120.. .)p is not isomorphic to a subspace of IP ~ l 2. 

To see this, let Yn = { Y ~ ( 1 2 ~ 1 2 0 " " ) p : Y ( J ) =  0 for all j <n} .  Let P be 

the projection of frO) 12 onto 12 with kernel l p. Let T'(/2 ~) 12 ~) "")p-* I p @ 12 
be a given operator. Since every operator from 1 p into I 2 is compact (c.f .p.  206 

of E161 , it follows that IIP TI Y~ I]-~ 0 as n ~ oo. Hence letting 

e = t - P ,  t l ( r -  Qr)l rnlt 0 

as n -~ oo. Thus if T were one-to-one with closed range, we would have that for 

n sufficiently large, Y~ would be isomorphic to a subspace of QT I Y,, i.e., to 12 . 

But ff is isomorphic to a subspace of Y~, so this is impossible. 

This completes the proof of the Lemma and hence of Corollary 14. 

Now let Zp = (l z @ I z @...)p and Yp = (Xp @ Xp @...)p. In addition to the 

two new spaces mentioned above, we also obtain the .~p spaces 

Zp @ Xp, Bp @ Xp, and Yp. 

Again fix 2 < p < oo. J. Lindenstrauss and A. Pelczynski have recently proved 

that L p is not isomorphic to a subspace of Zp [-8]. Since Yp is isomorphic to a 

subspace of Zp and the three spaces mentioned above are all isomorphic to com- 

plemented subspaces of Yp, all of these spaces are non-isomorphic to L p 

and consequently to the other previously known ~ p  spaces by Corollary 14. 

They are also non-isomorphic to X~, since Zp is a factor of all of them, yet Zp 

is not isomorphic to a subspace of Xp. 

We have recently proved that l" is isomorphic to a subspace of X¢ foi all 

q < r < 2. (Details of this will appear elsewhere). It follows that Xp is not a con- 



Vol. 8, 1 9 7 0  INDEPENDENT RANDOM VARIABLES 299 

tinuous linear image of Bp, and consequently the above three spaces are all non- 

isomorphic to Bp. We do not know if these three spaces are also mutually non- 

isomorphic. More information on subspaces of Xq seems to be required. In 

this connection, the following characterization of Xq may be of some use: Let 

(w.) be a sequence satisfying (1) (for fixed 2 < p < ~ )  and let (g*) be the dual 
:g 

basis of Xp,w. (Thus Xp ~ Xr,  w where as always 1/p + 1/q = 1.) Then it can 

be seen that for any sequence of scalars (c.), Zc.g* converges if and only if 

~;min ,Ic.I <oo 
.=1 ~ Wn 

if and only if 

£ 4,.(I c.I)< oo, 
. = 1  

where 

4.(x) = rain qX q 
Wn 

for all x > O. (The q~.'s are thus convex functions.) Then if we define 

= : -5_ 1 , 
n = l  

then Ill Iit is equivalent to the dual norm on (Xpw)*. 

APPENDIX. 

Let p be fixed throughout with 2 < p < oo. We present here a constructive 

proof that )~p,w is uncomplemented in lP~) l 2 if w satisfies (1), and also obtain 

thereby another proof  that there exists an uncomplemented subspace of l p iso- 

morphic to I p. 

LEMMA A1. Let n be a positive integer and let (an) be an n × n matrix of  

scalars, and let K > 0 be such that for all scalars xl ,  . . . , x , ,  

( z Iz  a,jxjl ~) ~/~ <= I{ ( r. Ix, l") ~/~ 
i j 

Then 

hence also 

:g ( 2g %l~y/("-~)_-< K ~i("-~), 
i j 
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PROOF. Suppose first that (a~j) is diagonal; i.e. i ~ j  =>a~s = 0. Put 

x, = la,,l 2f~,-~ for all i. Then 

( Z l a , , x ,p )  , 2  = ( x [ a , , t 2 ~/(' 12 )) [ / 2 ~ g ( ~ [ai,[E'/(P-2') lip 

or  

Now for the general case: fix x ~ Z~ with !1 x II --< ~ and let r , . . . ,  r,, be the first 

n Rademacher functions. We use only the fact that r~,...,r~ are orthonormal 

real-valued functions in L2[0,1] with lr,(t) l = i for all i and t. Then for each 

t ,  0 < t < l ,  

X I ~" auXjrj(t)12 ~ K 2 '  
i i 

hence 

~0 
1 

K 2 >- ~, i 2 aoxTj(t)12dt 
i • j 

- -  x x la,121xjI2 = X ( X  la,12)lxJl 2 
i j j i 

T h u s  putting a)j = ( ~ i  ]aijl2) 1/2~ fo r  a l l  j ,  atij ~ 0 fo r  i ~ j ,  ( ~ l ajjxj  12) 1/2 

= K X I xjlP)t/~ for any x e l~, whence since the Lemma has been proved for 

diagonal matrices, 

l a S l " P - ~ ' -  - ~ ( z la,jl2Y/(~-2, <= K ~' / '~-~,  
y i Q.E.D. 

REMARKS. Lemma A1 of course generalizes immediately to infinite matrices 

as well. We may reformulate its conclusion as follows: 

For every operator T:IP-+ /2, z.(ll  Te. II ~' /( ' -~,)  < [l TI[ 2"/(v-2)where(e") de- 

notes the usual basis oJ lP.+ 

It follows immediately that if T:l• ~ l~ is one-one with flr[l __< 1, then 
p 2 I1 T-'I1 > n"-~"2' ,  whence we obtain the known result that d(l,,In) = n (v-2'/2". 

For the next results we recall that (e~,..-,eD (resp. (bl , . . . ,b,))  denotes the 

usual basis of lf(resp. 2 l , ) ,  and Z, denotes l~ @ l~, under the norm ][x @ YII = 

max {I[ x 11,11Y I1} 
LEMMA 2. Let n be fixed, let wa,.. . ,w, be positive numbers with w~ < 1/2 

for all i,  and let X ,  denote the span of {e~ + wiki: 1 -< i < n} in Z, .  Then for 

all projections P :Z ,  --* X~, 

t This result has also been obtained independently by E. Rietz (unpublished). 
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211Nil >=min. {(sup tw, l) -1, :c Iw, I " ' - 2 '  ) 
l<=i<=n / = 1  

PROOF. Let F~,-.., F,. ~ X,* be defined by F~(ej + wjbfl = 3zs for all i , j .  Then 

]l F, ]] = 1 for all n. Define (a,~) by a,s = w,F,(Pefl. Since P is a projection 

FsP(ej + wjb2) = 1 = F P(ej) + wsFjP(bfl. 

Since IFxP(b)i <= ti pll, w o  thus have that 

la.I = wjl Fs(Pe./) [ >= w+(1 - w, li P It)" 

It is easily seen that the matrix (a~j) satisfies the hypotheses of Lemma A1 for 

K = I[Pil. Hence if 2i[Pll < (supl<=i<=.iwl[) -1 , then we obtain by Lemma 1 

and the above inequalities that 

2 -2''/(1'-2) 2 Iwj i  2~'m'-z) N 

< 

X lwjl -Iw l II P 11) ~> 

x laxjl _--< IIPII 
or ( ~2 [wjl2pl@-2)) 'p-z)/2p < 2NP H . This proves Lemma A2. 

The above lemma enables us to construct an uncomplemented subspace of 

I p, isomorphic to 1 ~, as follows. Fix n for the moment, and put w i = n -(p-2)/4p 

for all j ,  1 < j < n. Lemma 2 implies that if P is a projection from Z. onto X., 

then [[ P II > ln(/~-2)/4P (provided n-(P-2)/4P< l). Hence it follows immediately 

that ( ]~ .00_ 1 ® X.)p is uncomplemented in ( ~ .~=1 ® Z.)p; our proof of Theorem 

6 shows that both of the latter spaces are isomorphic to I p. More generally, 

we obtain the followiog result (also implied by our Proposition 5 above): 

PROPOSmON A3. Let (%)  be an infinite sequence satisfying (1). Let 

p. = inf{NPll : p : z . - +  x .  is a surjective projection), where X .  is as defined 

in Lemrna 2, for  all n. Then p. ~ oo. Consequently Xp,w is uncomplemented 

in lPO) l 2 and ( 2 @X.)p  is uncomplemented in ( ~ ~=1 @Z.)p. 

PROOV. Let M be a given positive real number. Choose N such that 
( ] ~  i =N IWil 2pl(p-2))(p-2)lep I wil <= (2M)- i for all i __> N.  Now choose N, such that s, 

> 2M and fix n > N t .  Let Z'. denote the span of {ei, bi: N <_ i <_ n} and X'. 

the span of {ei + w,bi: N <_ i <_ n}. It follows from LemmaA2 that if P: Z,', ~ X~ 

is a projection, then I1P II = M Since there is a projection of norm one from X. 
t onto X. ,  it follows immediately that p,, > M; hence p. ~ oe as n --, o% proving 

Proposition A3. Q.E.D. 
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Remarks.  Let n and the wi's be as in Lemma 2. One can obtain the correct 
order of magnitude for the norm of a projection P from Z. onto X. as follows: 
assume that w~ < Wz .." < w.. If there exists a j (necessarily unique) with 
1 < j  < n - 1  such that 

j j + l  
u~- 2 p / (p-  2) ~-d W 2p/(p-2)  ~ W - 2 p / ( p - 2 )  and ~" w2p/ (P-2)  > " j + l  

i = 1  i= l  

then Lemma 2 implies that 2 IIP II = > max{( ]~ j,=,,v,, 2p/(p-2),(p-, 2)/(2p), wj+,-' }. 

(flPII must be at least as large as the norm of a projection from Zj  onto Xj ,  
or from Zj+a onto Xj+O.  However, if we define P by 

) P ,~iei -]- flibi = ~, 2i(e i + wibi) + ~, wi- lfli(e i -]- wibi) , 
i = 1  i=1  i = j + l  

for all scalars 21, . . . ,2,,fll,  . . . ,ft , ,  then 

(A) I[PII < 2max w2p/(P-2))(P-2)/(2p)wj-+ll • 

On the other hand, if there is no such j ,  then 2 IIP [I > ( ~" '~=xw2p/(P-2))(P-2)/(EP) 

for any projection P ,  but there is a projection of norm at most 
( E/=~ ~ / ( ~ - ~ ) ) ( P - : ) / ( ~ )  < w; ~ < n ( p - ~ ' ( ' ' .  

In addition, the right side of the inequality (A) is less than or equal to 

2n (p-2)/4p. Thus the example given preceding Proposition A3 gives the largest pos- 

sible size of I] P i[ for a projection P from Z. onto X,, to within the constant ¼. Note 

that X.  is an n-dimensional subspace of the 2n-dimensional space Z. = I. p @ I z . 

(The results of Sobczyk ]-20] show that in fact there exists a subspaee K of I. p 

such that [[ P I[ > ½(n (p -  2)/2p__ 1) for any projection P from l. p onto K;  however 

this space K seems to be difficult to write down explicitly. We suspect that this 

K is considerably different from the finite-dimensional spaces discussed in this 

paper.) 
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